Search results

1 – 10 of 16
Article
Publication date: 17 December 2021

Jingbo Xu, Xiaohong Xu, Xiaomeng Cui, Fujun Zhang, Qiaowei Li, Weidong Wang and Yuhang Jiang

As the infrastructure of the railway, the rail could sink or deform to different degrees due to the impact of train operation or the geological changing force for years, which…

Abstract

Purpose

As the infrastructure of the railway, the rail could sink or deform to different degrees due to the impact of train operation or the geological changing force for years, which will lead to the possibility that the facilities on both sides of the rail invade the rail clearance and bring hidden dangers to the safe operation of the train. The purpose of this paper is to design the gauge to measure the clearance parameters of rail.

Design/methodology/approach

Aiming at the problem, the gauge for clearance measurement was designed based on a combination measurement method in this paper. It consists of the measurement box and the rail measurement vehicle, which integrates a laser displacement sensor, inclination sensor, gauge sensor and mileage sensor. The measurement box was placed outside the rail vehicle. Through the design of a hardware circuit and software system, the movement measurement of the clearance parameters was realized.

Findings

In this paper, the measurement equations of horizontal distance and vertical height were established, the optimal solutions of the structural parameters in the equations were obtained by Levenberg–Marquardt method, then the parameter calibration problem was also solved.

Originality/value

The gauge has high precision; its measurement uncertainty reaches 1.27 mm. The gauge has manual and automatic working modes, which are convenient to operate and have practical popularization value.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 November 2022

Xishuang Jing, Duanping Lv, Fubao Xie, Chengyang Zhang, Siyu Chen and Ben Mou

3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various…

Abstract

Purpose

3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various manufacturing fields. However, traditional 3-axis printing has limitations of the support structure and step effect due to its low degree of freedom. The purpose of this paper is to propose a robotic 3D printing system that can realize support-free printing of parts with complex structures.

Design/methodology/approach

A robotic 3D printing system consisting of a 6-degrees of freedom robotic manipulator with a material extrusion system is proposed for multi-axis additive manufacturing applications. And the authors propose an approximation method for the extrusion value E based on the accumulated arc length of the already printed points, which is used to realize the synchronous movement between multiple systems. Compared with the traditional 3-axis printing system, the proposed robotic 3D printing system can provide greater flexibility when printing complex structures and even realize curved layer printing.

Findings

Two printing experiments show that compared with traditional 3D printing, a multi-axis 3D printing system saves 47% and 79% of materials, respectively, and the mechanical properties of curved layer printing using a multi-axis 3D printing system are also better than that of 3-axis printing.

Originality/value

This paper shows a simple and effective method to realize the synchronous movement between multiple systems so as to develop a robotic 3D printing system that can realize support-free printing and verifies the feasibility of the system through experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 September 2019

Junliang He, Hang Yu, Caimao Tan, Wei Yan and Chao Jiang

The development of mega container ships and operational pressures puts forward higher requirements on the operational ability of the container terminal. Accordingly, the purpose…

Abstract

Purpose

The development of mega container ships and operational pressures puts forward higher requirements on the operational ability of the container terminal. Accordingly, the purpose of this paper is to propose an effective method for quay crane (QC) scheduling of multiple hatches vessel considering double-cycling strategy to improve the operation efficiency and reduce the risk of delay.

Design/methodology/approach

A mixed integer programming model, which covers the main operational constraints in a container terminal, is formulated to solve the quay crane scheduling problem (QCSP) with a novel objective.

Findings

A case study is presented and a number of numerical experiments are conducted to validate the effectiveness of the proposed model. Meanwhile, management insights are proposed. The results demonstrate that the proposed method can efficiently solve QCSP in a container terminal, and an interesting finding is that reducing the stack layers on the vessel can improve the operation efficiency of QC.

Originality/value

A new mathematical model is proposed for QC scheduling at the operational level, which considers the constraints of double-cycling strategy, multiple hatches and hatch covers. The proposed model also provides methods to research the QC double-cycling problem considering the balance between energy cost and operation efficiency.

Details

Industrial Management & Data Systems, vol. 120 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 20 August 2021

Yuhang Gao, Xiaohong Chen, Ping Liu, Honglei Zhou, Shaoli Fu, Wei Li, Xinkuan Liu, Fengcang Ma, Yanbo Zhu and Jiayan Wu

This study aims to investigate the effect of coatings prepared by the addition of copper-aluminum alloy powder on the corrosion behavior of 90/10 copper-nickel alloy.

Abstract

Purpose

This study aims to investigate the effect of coatings prepared by the addition of copper-aluminum alloy powder on the corrosion behavior of 90/10 copper-nickel alloy.

Design/methodology/approach

Coatings of copper-aluminum alloy powder at different contents (Wt.% = 50%, 60%, 70% and 80%) were prepared by the high-temperature heat treatment process. The microstructure and component of the coatings were characterized by scanning electron microscope, X-ray diffraction, energy dispersive spectrometer and X-ray photoelectron spectroscopy. The electrochemical properties of the coating were explored by electrochemical impedance spectroscopy.

Findings

The results show that the aluminized layer was successfully constructed on the surface of 90/10 copper-nickel alloy, the composition of the coating was composed of copper-aluminum phase and aluminum-nickel phase, the existence of the aluminum-nickel phase was formed by the diffusion of Ni elements within the substrate and because of the diffusion, the Al-Ni phase was distributed in the middle and bottom of the coating more. The Al-Ni phase is considered to be the enhanced phase for corrosion resistance. When the copper-aluminum alloy powder content is 70 Wt.%, the corrosion resistance is the best.

Originality/value

The enhancement of corrosion resistance of 90/10 copper-nickel alloy by the copper-aluminum alloy powder was revealed, the composition of the aluminized layer and the mechanism of corrosion resistance were discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 May 2022

Guangming Fu, Yuhang Tuo, Baojiang Sun, Chen Shi and Jian Su

The purpose of this study is to propose a generalized integral transform technique (GITT) to investigate the bending behavior of rectangular thin plates with linearly varying…

Abstract

Purpose

The purpose of this study is to propose a generalized integral transform technique (GITT) to investigate the bending behavior of rectangular thin plates with linearly varying thickness resting on a double-parameter foundation.

Design/methodology/approach

The bending of plates with linearly varying thickness resting on a double-parameter foundation is analyzed by using the GITT for six combinations of clamped, simply-supported and free boundary conditions under linearly varying loads. The governing equation of plate bending is integral transformed in the uniform-thickness direction, resulting in a linear system of ordinary differential equations in the varying thickness direction that is solved by a fourth-order finite difference method. Parametric studies are performed to investigate the effects of boundary conditions, foundation coefficients and geometric parameters of variable thickness plates on the bending behavior.

Findings

The proposed hybrid analytical-numerical solution is validated against a fourth-order finite difference solution of the original partial differential equation, as well as available results in the literature for some particular cases. The results show that the foundation coefficients and the aspect ratio b/a (width in the y direction to height of plate in the x direction) have significant effects on the deflection of rectangular plates.

Originality/value

The present GITT method can be applied for bending problems of rectangular thin plates with arbitrary thickness variation along one direction under different combinations of loading and boundary conditions.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2023

ShuYu Guo, Lin Fan, Yan He, BoHan Geng, MingQi Chen and Yuhang Wang

This study aims to investigate the effect of microtextured tools on the geometric morphology of serrated chips, and further improve the cutting performance of polycrystalline…

Abstract

Purpose

This study aims to investigate the effect of microtextured tools on the geometric morphology of serrated chips, and further improve the cutting performance of polycrystalline cubic boron nitride (PCBN) tool and extend the tool life and the surface quality of the machined surface.

Design/methodology/approach

A three-dimensional finite element cutting model of hardened steel AISI D2 with microtextured PCBN tools were established using the finite element software Abaqus, and cutting tests were carried out. Furthermore, the stress distribution in the primary deformation zone was investigated based on the triaxiality of stress, and the influence of microtexture on the geometric morphology of serrated chips and crack development was researched.

Findings

The results show that compared with nontexture tools, elliptical pits and wavy grooves microtexture tools have lower serrated degree Gs, higher serrated frequency f per unit length and more miniature serrated step Pc. The serrated phenomenon is intensified because the tensile stress zone of chips generated by nontextured tools is longer than that of elliptic pits and wavy grooves microtexture tools. Simultaneously, the maximum value of triaxiality in the tensile stress zone achieved by nontexture tools is larger than that of the two microtexture tools, and chips obtained by nontextured tools are more susceptible to propagation fractures.

Originality/value

This paper mainly studies the effect of microtexture on chip microgeometry, which is relatively little studied at present. At the same time, this paper has a certain engineering significance for PCBN tool turning hardening steel.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0149/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2022

Zhao Yuhang, Zhicai Yu, Hualing He and Huizhen Ke

This study aims to fabricate a multifunctional electromagnetic interference (EMI) shielding composite fabric with simultaneous high-efficiency photothermal conversion and Joule…

Abstract

Purpose

This study aims to fabricate a multifunctional electromagnetic interference (EMI) shielding composite fabric with simultaneous high-efficiency photothermal conversion and Joule heating performances.

Design/methodology/approach

A multifunctional polypyrrole (PPy) hydrogel/multiwalled carbon nanotube (MWCNT)/cotton EMI shielding composite fabric (hereafter denoted as PHMC) was prepared by loading MWCNT onto tannin-treated cotton fabric, followed by in situ crosslinking-polymerization to synthesize three-dimensional (3D) conductive networked PPy hydrogel on the surface of MWCNT-coated cotton fabric.

Findings

Benefiting from the unique interconnected 3D networked conductive structure of PPy hydrogel, the obtained PHMC exhibited a high EMI-shielding effectiveness vale of 48 dB (the absorbing electromagnetic wave accounted for 84%) within a large frequency range (8.2–12.4 GHz). Moreover, the temperature of the laminated fabric reached 54°C within 900 s under 15 V, and it required more than 100 s to return to room temperature (28.7°C). When the light intensity was adjusted to 150 mW/cm2, the PHMC temperature was about 38.2°C after lighting for 900 s, indicating high-efficiency electro-photothermal effect function.

Originality/value

This paper provides a novel strategy for designing a type of multifunctional EMI shielding composite fabric with great promise for wearable smart garments, EMI shielding and personal heating applications.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 December 2023

Zehui Bu, Jicai Liu and Jiaqi Liu

Emotions, understood as evolving mental states, are pivotal in shaping individuals“' decision-making, especially in ambiguous information evaluation, probability estimation of…

Abstract

Purpose

Emotions, understood as evolving mental states, are pivotal in shaping individuals“' decision-making, especially in ambiguous information evaluation, probability estimation of events, and causality analysis. Public–private partnership (PPP) projects represent a confluence of “economic–environmental–social” dimensions, wherein stakeholder behavior follows the sequential progression of “cognition–emotion–action.” Consequently, comprehending the effects of emotional shifts on stakeholder's decision-making processes is vital to fostering the sustainability of PPP projects.

Design/methodology/approach

The paper utilizes rank-dependent expected utility and evolutionary game theory to systematically examine the influence of emotional factors on stakeholders' behavior and decision-making processes within PPP projects. The paper integrates three emotional state functions—optimism, pessimism and rationality—into the PPP framework, highlighting the intricate interactions among the government, private sector, surrounding public and the media. Furthermore, the paper amalgamates the evolutionary pathways of environmental rights incidents with the media's role. Through equilibrium analysis and numerical simulation, the paper delves into the diverse interplay of emotions across different phases of the environmental rights incident, assessing the impact of these emotions on the evolutionary game's equilibrium results.

Findings

Emotions significantly influence the microlevel decisions of PPP stakeholders, adapting continually based on event dynamics and media influences. When the private sector demonstrates optimism and the surrounding public leans toward rationality or pessimism, the likelihood of the private sector engaging in speculative behavior escalates, while the surrounding public refrains from adopting a supervisory strategy. Conversely, when the private sector is pessimistic and the public is optimistic, the system fails to evolve a stable strategy. However, when government regulation intensifies, the private sector opts for a nonspeculative strategy, and the surrounding public adopts a supervisory strategy. Under these conditions, the system attains a relatively optimal state of equilibrium.

Originality/value

The paper develops a game model to examine the evolutionary dynamics between the surrounding public and private sectors concerning environmental rights protection in waste incineration PPP projects. It illuminates the nature of the conflicting interests among project participants, delves into the impact of emotional factors on their decision-making processes and offers crucial perspectives for the governance of such partnerships. Furthermore, this paper provides substantive recommendations for emotional oversight to enhance governance efficacy.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 5 April 2023

Syed Shoyeb Hossain, Yongwei Cui, Huang Delin and Xinyuan Zhang

Evaluating the economic effects of climate change is a pivotal step for planning adaptation in developing countries. For Bangladesh, global warming has put it among the most…

1619

Abstract

Purpose

Evaluating the economic effects of climate change is a pivotal step for planning adaptation in developing countries. For Bangladesh, global warming has put it among the most vulnerable countries in the world to climate change, with increasing temperatures and sea-level rise. Hence, the purpose of this paper is to examine how climate change impacts the economy in Bangladesh in the case of climate scenarios.

Design/methodology/approach

Using a dynamic computable general equilibrium (CGE) model and three climate change scenarios, this paper assesses the economy-wide implications of climate change on Bangladesh’s economy and agriculture. It is clear from the examination of the CGE model that the impacts of climate change on agricultural sectors were felt more sharply, reducing output by −3.25% and −3.70%, respectively, and increasing imports by 1.22% and 1.53% in 2030 and 2050, compared to the baseline.

Findings

The findings reveal that, relative to baseline, agricultural output will decline by a range of −3.1% to −3.6% under the high climate scenario (higher temperatures and lower yields). A decrease in agricultural output results in declines in agricultural labor and household income. Household income falls in all categories, although it drops the most in urban less educated households with a range of −3.1% to −3.4%. On the other hand, consumption of commodities will fall by −0.11% to −0.13%, according to the findings. Although climate change impacts had a relatively small effect on gross domestic product, reducing it by −0.059% and −0.098% in 2030 and 2050, respectively.

Practical implications

As agricultural output, household consumption and income decline, it will impact the majority of the population’s health in Bangladesh by increasing malnutrition, hidden hunger, poverty, changing food environment, changing physical and mental health status and a changing health-care environment. Therefore, population health and food security will be a top socioeconomic and political concern for Bangladesh Government.

Originality/value

The examination of the dynamic CGE model is its originality. In conclusion, the evidence generated here can provide important information to policymakers and guide government policies that contribute to national development and the achievement of food security targets. It is also necessary to put more emphasis on climate change issues and address potential risks in the following years.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 10 of 16